Source code for skeval.examples.confidence_example

# Authors: The scikit-autoeval developers
# SPDX-License-Identifier: BSD-3-Clause

import pandas as pd
from sklearn.metrics import accuracy_score, f1_score
from sklearn.impute import KNNImputer
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import RandomForestClassifier

from skeval.evaluators.confidence import ConfidenceThresholdEvaluator
from skeval.utils import get_cv_and_real_scores, print_comparison


[docs] def run_confidence_eval(verbose=False): # ====================== # 1. Load datasets # ====================== df_geriatrics = pd.read_csv( "./skeval/datasets/geriatria-controle-alzheimerLabel.csv" ) df_neurology = pd.read_csv( "./skeval/datasets/neurologia-controle-alzheimerLabel.csv" ) # ====================== # 2. Separate features and target # ====================== X1, y1 = df_geriatrics.drop(columns=["Alzheimer"]), df_geriatrics["Alzheimer"] X2, y2 = df_neurology.drop(columns=["Alzheimer"]), df_neurology["Alzheimer"] # ====================== # 3. Define model pipeline # ====================== model = make_pipeline( KNNImputer(n_neighbors=4), RandomForestClassifier(n_estimators=300, random_state=42), ) # ====================== # 4. Initialize evaluator # ====================== scorers = { "accuracy": accuracy_score, "f1_macro": lambda y, p: f1_score(y, p, average="macro"), } evaluator = ConfidenceThresholdEvaluator(model=model, scorer=scorers, verbose=False) # ====================== # 5. Fit evaluator # ====================== evaluator.fit(X1, y1) # ====================== # 6. Estimated performance # ====================== estimated_scores = evaluator.estimate(X2, threshold=0.65, limit_to_top_class=True) # ====================== # 7. CV and Real performance # ====================== train_data = X1, y1 test_data = X2, y2 scores_dict = get_cv_and_real_scores( model=model, scorers=scorers, train_data=train_data, test_data=test_data ) cv_scores = scores_dict["cv_scores"] real_scores = scores_dict["real_scores"] if verbose: print_comparison(scorers, cv_scores, estimated_scores, real_scores) return {"cv": cv_scores, "estimated": estimated_scores, "real": real_scores}
if __name__ == "__main__": results = run_confidence_eval(verbose=True)