Source code for skeval.examples.shap_example

# Authors: The scikit-autoeval developers
# SPDX-License-Identifier: BSD-3-Clause

# ==============================================================
# ShapEvaluator Example
# ==============================================================

import pandas as pd
from sklearn.metrics import accuracy_score, f1_score
from sklearn.impute import KNNImputer
from sklearn.pipeline import make_pipeline
from xgboost import XGBClassifier

from skeval.evaluators.shap import ShapEvaluator
from skeval.utils import get_cv_and_real_scores, print_comparison


[docs] def run_shap_eval(verbose=False): # ===================================== # 1. Load datasets # ===================================== geriatrics = pd.read_csv("./skeval/datasets/geriatria-controle-alzheimerLabel.csv") neurology = pd.read_csv("./skeval/datasets/neurologia-controle-alzheimerLabel.csv") # ===================================== # 2. Separate features and target # ===================================== X1, y1 = geriatrics.drop(columns=["Alzheimer"]), geriatrics["Alzheimer"] X2, y2 = neurology.drop(columns=["Alzheimer"]), neurology["Alzheimer"] # ===================================== # 3. Define pipeline (KNNImputer + RandomForest) # ===================================== model = make_pipeline(KNNImputer(n_neighbors=5), XGBClassifier()) # ===================================== # 4. Define scorers and evaluator # ===================================== scorers = { "accuracy": accuracy_score, "f1_macro": lambda y, p: f1_score(y, p, average="macro"), } evaluator = ShapEvaluator( model=model, scorer=scorers, verbose=False, inner_clf=XGBClassifier(random_state=42), ) # ===================================== # 5. Fit evaluator on geriatrics data # ===================================== evaluator.fit(X1, y1) # ===================================== # 6. Estimate performance (train on X1, estimate on X2) # ===================================== estimated_scores = evaluator.estimate(X2) # ===================================== # 7. Compute real and CV performance # ===================================== train_data = X1, y1 test_data = X2, y2 scores_dict = get_cv_and_real_scores( model=model, scorers=scorers, train_data=train_data, test_data=test_data ) cv_scores = scores_dict["cv_scores"] real_scores = scores_dict["real_scores"] if verbose: print_comparison(scorers, cv_scores, estimated_scores, real_scores) return {"cv": cv_scores, "estimated": estimated_scores, "real": real_scores}
if __name__ == "__main__": results = run_shap_eval(verbose=True)